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Abstract: Testing performs a very critical role for ensuring software quality. Software testing is the most 

commonly used technique for demonstrating that the software accomplishes its anticipated task. In the 

software testing one will check the actual output with the expected output. If both are equal then the 

behaviour of the software in normal otherwise the testing process needs revision. In software testing the 

software is executed with a set of test cases and the behaviour of the system for the test cases is evaluated 

to resolve if the system is performing as expected. 
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1. Introduction 

As software testing is the most time consuming phase in development, most of the problems 

associated with testing occur from one of the following causes:  

(a) Failure to define testing objectives,  

(b) Testing at the wrong phase in the cycle,  

(c) Use of ineffective test techniques.  

The main objective of testing is to deliver quality software. The cost of quality will have three 

components [11] namely the failure cost, appraisal cost & prevention cost. The success of testing 

in revealing errors depends significantly on the test cases. The process of testing includes 

choosing test data from the program's input domain, executing the program on these test data, 

and comparing the actual output with the expected output. The testing of the complete set of 

input would provide the complete depiction of the performance and functionality of the program. 

The complete set of input of a program is usually too large that it is impossible to test it for all. 

The exhaustive testers you will find but the exhaustive testing you will not. So the modus 

operandi of the reasonable software testing is to optimize the set of input by selecting relatively 

small subset, which will represent the entire input domain and the expected behaviour of the 

program on this set of input is then used to expect its behaviour in general. The test input should 

be chosen so that executing the program on this input set will expose every bit of errors. So any 

program which behaves accurately for small set of input will behave accurately for any set of 

input in the complete input set. An overwhelming majority of programs written nowadays handle 

data. Programming language paradigms exploit the concept of variables. Variables have been 

seen as the main areas where a program can be tested structurally. Numerous of variables in the 

program slice can be used together to calculate the values of other variables. Variables can 

receive their values from other sources like human interaction via a keyboard. This increased 
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level of complexity and can results errors in the programs. Value of variables may be altered in 

an unexpected way.  

2. Approaches of testing 

Different test case generation techniques have been developed for making the software testing 

successful. These include various black box and white box test case generation techniques. Some 

of them are described in following subsections. 

2.1 Equivalence class partitioning 

Before actually starting off the testing, it is good to have optimum test cases in place which not 

only cover all the required features but also are adequate to discover good quality bugs. There 

are many design techniques for writing test case. One of the most popular among them is 

Equivalence Class Partitioning.It is a Black-box (Specification Based) test case design technique 

with two primary goals [12] [ 19] [20] 

1) To reduce the number of test cases to necessary minimum,  

2) To select the right test cases to cover all possible scenarios.  

The basic idea behind equivalence class partitioning is that the input for the program can be put 

into groups, and that the program should behave equivalently for each member of the group. 

Therefore, it will not be necessary to test each possible input, but only one or a few members of 

each equivalence class. As the exhaustive testing is next to impossible so the next natural 

approach is to divide the input domain into a set of equivalence classes. Now if any module or 

program work properly for any value in that class then it will work properly for all the other 

values lies in that equivalence class. Similarly one can design such equivalence classes for the 

entire input domain. So the number of test cases can be reduced by selecting one test case from 

each equivalence class. For example if one is checking a program to find whether a number is 

prime or not, then one can divide the entire input domain in to two equivalence classes one 

containing all the prime numbers and other containing all non-prime numbers. The prime 

numbers set of inputs are called valid inputs and non-prime set of inputs are called invalid inputs. 

For robust software one must also consider invalid inputs. Similarly one can further divide the 

classes in to other smaller classes to improve the testing process. 

2.2 Boundary Value Analysis 

Performance of any module at the border of each equivalence partition is more likely to be 

erroneous, so boundaries are an area where testing is likely to yield errors. The maximum and 

minimum values of a partition are its boundary values. A boundary value for a valid partition is a 

valid boundary value and the boundary of an invalid partition is an invalid boundary value. Tests 

cases can be designed to cover both valid and invalid boundary values. When designing test 

cases, a test for each boundary value is selected. Boundary value analysis can be applied at all 

test levels. It is comparatively easy to apply and its defect finding capability is high. This method 

of testing is often considered as an extension of equivalence partitioning. Suppose each input 

value has a defined range. The boundary value analysis can have six test cases. If any integer 

variable is having some minimum and maximum values, then there are six boundary values 

which fulfil the criteria of boundary value analysis. One has minimum-1, minimum, minimum+1 

for lower limit and maximum-1, maximum, maximum+1 for upper limit. There are two strategies 

for combining the boundary values for the different variables in test cases. In the first case if one 
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has two variables X and Y then total 13 test cases ( Xmin-1, Xmin, Xmin+1, Xmax-1, Xmax, 

Xmax+1, Ymin-1, Ymin, Ymin+1, Ymax-1, Ymax, Ymax+1, and one nominal value) are there. 

So in this case the total number of test cases becomes 6n+1. Secondly one can try all the possible 

combinations for the values for different variables. Now there are seven values for each variable 

so if there are n variables the total combinations will be 7n. There are certain limitations while 

optimizing test cases using BVA. Boundary value analysis works well when the software under 

test (SUT) is a function of several autonomous variables that represent bounded physical 

quantities. When these conditions are met BVA works well but when they are not there are lot of 

deficiencies in the results. 

2.3 Cause-Effect Graphing 

The major drawback with the above two techniques is that they consider each input individually. 

Both of these techniques do not focus on the combination of input that detects errors smartly 

rather these techniques focus on the conditions and classes of one input. A “Cause” in cause-

effect graphing corresponds to an individual input condition that brings about an internal change 

in the system and an “Effect” represents an output condition. In this testing strategy first of all 

the input conditions called causes and their action called effect are identified for a module. Then 

a cause-effect graph is developed and transforms that graph into a decision table. Each column of 

a decision table represents a test case. If there are n different input conditions and any 

combination of the input conditions is valid then the total number of test cases comes out to be 

2n. Cause-Effect graphing select combinations of input conditions in a systematic way, such that 

the number of test cases does not become unmanageably large.  So after identifying the cause 

and effects, for each effect one can identify the causes that can produce that effect and how the 

condition has to be combined to make the effect true.  The conditions are combined using the 

Boolean operators “AND”, “OR” and “NOT”. Cause Effect graphing technique generate high-

yield test cases as well as gives the understanding of the functionality of the system. There are 

lots of techniques available for reducing the number of test cases generated by appropriate 

traversing of the graph [19] [20]. 

 

2.4Control-Flow Testing 

Control-flow testingis one of the structural testing techniques that use the program’s control flow 

as a model. Control-flow testing applies to almost all software and is effective for most software. 

It is a fundamental testing technique. Its applicability is mostly to relatively small programs or 

segments of larger programs. Control-flow testing techniques are based on judiciously selecting 

a set of test paths through the program. The set of paths chosen is used to achieve a certain 

measure of testing thoroughness for examplepick enough paths to assure that every source 

statement is executed as least once. Control-flow testing is most applicable to new software for 

unit testing. Control-flow bugs are not as common as they used to be because structured 

programming and object oriented languages minimize them. 

The postulations of Control-flow testing are  

1) Specifications are correct; 

2) Data is defined and accessed properly; 

3) There are no bugs other than those that affect control flow. 
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Fundamental Path Selection Criteria are: 

1. Ensure that every instruction in the routine has been exercised at least once; 

2. Every decision has been taken in each possible direction at least once; 

3. An adequate number of paths to achieve coverage; 

4. Selection of short, functionally sensible paths; 

5. Minimizing the number of changes from path to path. Preferably only one decision 

changing at a time; 

6. Favour more but simpler paths over fewer and complicated paths; 

7. Outline of Control Flow Based Testing; 

8. Inputs to the test generation process 

a. Source code 

b. Path selection criteria: statement, branch, etc. 

9. Generation of control flow graph (CFG) 

a. A CFG is a graphical representation of a program unit. 

b. Compilers are modified to produce CFGs. (You can draw one by hand.) 

10. Selection of paths 

a. Enough entry/exit paths are selected to satisfy path selection criteria. 

11. Generation of test input data 

a. Two kinds of paths 

i. Executable path: There exists input so that the path is executed. 

ii. Infeasible path: There is no input to execute the path. 

b. Solve the path conditions to produce test input for each path. 

The control flow graph is a graphical representation of a program’s control structure. Flow 

graphs consist of three primitives, 

1) Adecision is a program point at which the control can diverge. e.g. if and case statements). 

2) A junction is a program point where the control flow can merge. (e.g., end if, end loop, goto 

label) 

3) A process block is a sequence of program statements uninterrupted by either decisions or 

junction’s i.e.straight-line code. 

A process has one entry and one exit. 

A program does not jump into or out of a process. 
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Figure 1: Symbols in a control flow graph 

 

2.5 Data Flow Testing 

The idea of data-flow testing permits the tester to inspect variables throughout the program to 

discover errors. The data-flow testing is a form of structural testing that is a variant on path 

testing. It focuses on the dentition and usage of variables, rather than the structure of the 

program. Data-flow testing permits the tester to chart the changing values of variables within the 

program. It does this by utilising the idea of a program graph. So data-flow testing is closely 

related to path testing but the paths in the program are selected on variables. Data-flow testing 

looks at the life-cycle of a particular piece of a variable in an application. By looking for patterns 

of data usage, risky areas of code can be found and more test cases can be applied on it.  

There are four ways data can be used  

1) Defined,  

2) Predicate use (pu),  

3) Calculation use (cu),  

4) killed.  

Some patterns using a piece of data in a predicate logic after it has been killed show an anomaly 

in the code, and therefore the possibility of a bug [12] [20]. 

2.6 Mutation testing 

Mutation testing has been around since the late 1970s but is rarely used outside academia. 

Executing a huge number of mutants and finding equivalent mutants has been too expensive for 

practical use. Mutation testing measures how “good” our tests are by inserting faults into the 

program under test. Each fault generates a new program, a mutant that is slightly different from 

the original software module. The idea is that the tests are adequate if they detect all mutants. 

Mutation testing is a coverage criterion that has its roots in the very definition of reliable test 

sets. This is what makes it fundamentally different from most other criteria. Fault-based testing is 

the way in which some “marked” bugs loose in the code and try to catch them. If one catches 

them all, then “net” probably caught many of the other, fishier, fish. The unknown bugs, that is. 
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One of the fault-based testing strategies is mutation testing. There are many variations of 

mutation testing such as weak mutation [10], interface mutation [5] and specification-based 

mutation testing [19]. 

3. Optimization of test cases 

Software testing is the most commonly used technique for demonstrating that the software 

accomplishes its anticipated task. The process of testing includes choosing test data from the 

program's input domain, executing the program on these test data, and comparing the actual 

output with the expected output. The testing of the complete set of input would provide the 

complete depiction of the performance and functionality of the program. The complete set of 

input of a program is usually too large that it is impossible to test it for all. The exhaustive testers 

you will find but the exhaustive testing you will not. So the modus operandi of the reasonable 

software testing is to optimize the set of input by selecting relatively small subset, which will 

represent the entire input domain and the expected behaviour of the program on this set of input 

is then used to expect its behaviour in general. The test input should be chosen so that executing 

the program on this input set will expose every bit of errors. So any program which behaves 

accurately for small set of input will behave accurately for any set of input in the complete input 

set.  

An overwhelming majority of programs written nowadays handle data. Programming language 

paradigms exploit the concept of variables. Variables have been seen as the main areas where a 

program can be tested structurally. Numerous of variables in the program slice can be used 

together to calculate the values of other variables. Variables can receive their values from other 

sources like human interaction via a keyboard. This increased level of complexity and can results 

errors in the programs. Value of variables may be altered in an unexpected way. 

4. Genetic Algorithms 

A genetic algorithm is a form of evolution that occurs on a computer. They are search methods 

that can be used for both solving problems and modeling evolutionary systems. The Darwinian 

theory of evolution depicts biological systems as the product of the ongoing process of natural 

selection. Likewise, genetic algorithms allow engineers to use a computer to evolve solutions 

over time, instead of designing them by hand. Forrest has first explained the working of genetic 

algorithm and then discussed its application as problem solver and for making models [7]. With 

various mapping techniques and an appropriate measure of fitness, a genetic algorithm can be 

tailored to evolve a solution for many types of problems including optimization of a function or 

determination of the proper order of a sequence. She discussed the use of genetic algorithms in 

modeling ecological systems, immune systems and social systems. Mathematical analysis of 

genetic algorithms using the Holland’s schema theorem and building block hypothesis has also 

been discussed in the article.  

David Goldberg explained the genetic algorithms and evolutionary algorithms as family of 

computational methods in Darwinian Evolution. Genetic algorithms are search procedures based 

on natural selection and genetics. A simple genetic algorithm consists of selection, crossover and 

mutation. Selection is survival of fittest within the genetic algorithm. The key notion of selection 

is to give preference to better individuals. The design methodology of genetic algorithm relies 

heavily on Holland’s notion of schemata and building blocks. He stressed that genetic algorithms 

are best suited for wide range of applications because they can solve hard problems quickly and 
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reliably. Genetic algorithms are extensible, easy to hybridize and easy to interface to existing 

simulations and models [8].  

Goldberg also reviewed the elements of genetic algorithms and described the mechanics of 

genetic algorithms in his work [9]. He developed the fundamental intuition of genetic algorithms 

or innovation intuition. According to him,  

Selection + Mutation = Continual Improvement 

Selection + Recombination = Innovation 

He also discussed the technical lessons of genetic algorithm design. The primary idea of selecto-

recombinative genetic algorithm theory is that genetic algorithms work through a mechanism of 

quasi-decomposition and recomposition. Genetic algorithms implicitly identify building blocks 

or sub-assemblies of good solutions and recombine different subassemblies to form very high 

performance solutions. They suggested that research into genetic algorithms is profoundly 

changing. Genetic algorithm research helps us identify some of the different facets of innovation 

quantitatively. Genetic algorithm teaches us to respect the generation of an outstanding 

individual. Genetic algorithm research teaches us that creativity essentially makes hard problems 

easier by either directly or indirectly making the building blocks necessary to solve the problem 

more accessible to the search.  

Mitchell et al. analyzed two algorithms – RMHC and IGA to identify general principles of when 

and how a genetic algorithm will outperform hill climbing [16]. Experimental analysis was 

carried on Royal Road landscape. RHMC was analyzed with respect to R1. Genetic algorithm 

proved to be fast because of implicit parallelism. IGA also perfectly implements implicit 

parallelism. Expected time for IGA is on the order of 2K log N and for RHMC is on the order of 

2K N log N. RHMC is slower than IGA. Analysis was further carried on modified Royal road 

landscape R4 to understand how genetic algorithm works in general and where it will be more 

useful.  

Melanie Mitchell has explained the term Biological computation and its relation to 

computational biology and biologically inspired computing [17]. She then compared Biological 

computing with Traditional computing. In case of traditional computers, the processing of 

information is centralized and performed by the CPU. Traditional Computing require 

synchronization in many aspects of their processing. Traditional computing systems require 

components to be reliable with very low error probabilities. In Biological computing, 

information processing is massively parallel, stochastic, inexact and ongoing with no clean 

notion of a mapping between inputs and outputs. Biological systems operate with asynchronous 

components. Biological systems operate with unreliable components that are subject to frequent 

failures. In traditional computer science, universal computation and programmability are 

fundamental whereas relevance of these concepts for biological computing is unclear. Mitchell 

also analyzed the question –“Is computing a Natural Science?” 

Korf and Reid analyzed the asymptotic time complexity of admissible heuristic search 

algorithms such as A*, IDA* and depth first branch and bound. Time complexity of these 

algorithms depends primarily on the quality of the heuristic function [13]. Korf and Reid 

characterized heuristic function simply by the distribution of heuristic values in the problem 

space. Experimental analysis was carried out on Rubik’s cube, Eight Puzzle, Fifteen Puzzle. 

Analysis showed that the asymptotic heuristic branching factor is the same as the brute force 
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branching factor and the effect of a heuristic function is to reduce the effective depth of search 

rather than the effective branching factor. Asymptotic analysis was presented for fixed size 

problem as the solution length grows large and provided excellent predictions at typical solution 

depths. 

Meng et al. studied various encoding techniques in genetic algorithms and present sufficient 

convergence condition on genetic encoding in genetic algorithms [14]. They identified new 

categories of code like uniform code, bias code, trisector code and symmetric code and applied 

them on classical genetic techniques. Simulation results showed that genetic algorithms with 

specific codes can find solutions with better quality in shorter time than classical genetic 

algorithms. They also concluded that there is significant influence of encoding techniques on 

genetic algorithm’s performance in solving problems with big algorithm complexity. 

Evolvable hardware is upcoming application area, thereby; synthesis of analog and digital 

electronic circuits through evolving algorithms is gaining attention in current researches. In 

circuit synthesis, chromosomes represent a circuit and each of its genes describes the component 

of the circuit. Mesquita et al. proposed the adjacency matrix representation for chromosomes in 

evolving circuits. Adjacency matrix representation reduces the generation of anomalous circuits 

unlike earlier Incidence matrix, thus, increasing the efficiency of overall process [15]. They 

tested their proposed encoding for variable size chromosomes – their concatenation and 

cascading. Adjacency matrix assumed a graph with no parallel branches and thus prevents 

explicit representation of individual circuit elements.  

A large number of scheduling problems exist in domain of optimization problems. A schedule is 

constructed such that some measure is reduced. Commonly scheduling problems are modeled as 

a graph. Reviewing the pros and cons of earlier representation schemes for scheduling problems, 

Fenton and Walsh stated that repeating permutation representation has high volume of 

redundancy but it is useful and robust [6]. They introduced variety of genetic operators for 

repeating permutation representation like GMOX, GPX, GUX, PPX, PBM, SBM, and OBM. 

They tested these operators using GALIB. In all trials, GMOX outperformed other operators. 

Morphogenic computation yielded better results and improved evolvability of genetic algorithm. 

Genetic algorithm with chromosome differentiation (GACD): Nature generally differentiates the 

individuals in the species into more than one class. The prevalence of differentiation indicates an 

associated advantage which appears to be in terms of cooperation between two dissimilar 

individuals who can at the same time specialize in the own fields [21]. GACD incorporates 

chromosome differentiation for evolutionary process. Chromosomes are distinguished into two 

categories of population over the generations based on the value contained in the two class bits. 

These are initially generated based on maximum hamming distance between them. Crossover 

(mating) is allowed only between individuals belonging to these categories [1]. Theoretical 

analysis shows that the basic tenet of genetic algorithms holds for GACD as well; above average, 

short, low order schema will receive increasing number of trials in subsequent generations. It is 

proved that in many cases the lower bound of the number of instances of a schema h sampled by 

GACD is greater than or equal to that of CGA. Because of this, GACD is better able to exploit 

the information gained so far. Again, initializing the M and F populations in such a way so as to 

maximize the hamming distance between them, and allowing mating between individuals from 

these two dissimilar populations, enhances the exploration capability of GACD. Therefore, 

GACD appears to strike a better balance between exploration and exploitation, which is crucial 
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for any adaptive optimization technique, thereby giving it an edge over the conventional Genetic 

Algorithm. 

In 1993, De Jong and Sarma presented additional empirical evidence and suggested alternative 

deletion methods to reduce the variance [3] [4]. Cobb & Grefenstette compared three different 

strategies and modified the standard genetic algorithm in order to make it more applicable to 

rapidly changing environments [2]. A partial hyper mutation step was introduced after mutation 

which replaced a percentage of population by randomly generated individuals. The percentage 

replaced was called replacement rate. In order to measure the effect of replacement rate, 23 

modified genetic algorithms on non-stationary test functions were considered with varying 

percentage of population. Experiments showed that 10% and 30% random replacement gave 

better tracking performance. 50 % replacement showed too much random exploration. 

DeJong was the first to evaluate empirically the performance of genetic algorithms with 

overlapping populations. DeJong also stated the concept of crowding that follows the simple 

genetic algorithm except that only a fraction of population reproduces and dies each generation 

[3]. He introduced the generation gap G as a parameter to genetic algorithm where a percentage 

of population is chosen via fitness proportionate selection to undergo crossover and mutation and 

G x n individuals from population are chosen to die. He found that at low values of G, the 

algorithm had severe losses of alleles, also known as genetic drift, and resulted in poor search 

performance. 

 

5. Conclusion 

Software testing is very crucial part of software development. For testing we need some 

good quality inputs for the software and when we run software with these inputs we have to 

check the behavior of software. If these inputs are not good, testing may not be effective. So 

many test cases are required for software, which can be generated by Genetic Algorithm. So, test 

cases generation can be treated as an optimization problem and we can use Genetic Algorithm to 

solve it. 
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